Fundamentals
ML and DL - Session 5 : Logistic Regression
※ Session 6 부터 정형화해서 업로드 예정입니다. Sigmoid_Function.py import numpy as np from matplotlib import pyplot as plt from sklearn.linear_model import LogisticRegression # data x1 = np.array([0, 0.6, 1.1, 1.5, 1.8, 2.5, 3, 3.1, 3.9, 4, 4.9, 5, 5.1]) y1 = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) x2 = np.array([3, 3.8, 4.4, 5.2, 5.5, 6.5, 6, 6.1, 6.9, 7, 7.9, 8, 8.1]) y2 = np.array([1, 1, 1, 1, 1, ..
2021. 2. 18. 15:21
최근댓글