강의 : udemy (https://www.udemy.com/course/introduction-to-machine-learning-in-python/)
Course Flow
1. Fundamental basics
<Machine Learning>
2. Linear Regression & Logistic Regression
3. K-Nearest Neighbor Classifier
4. Naive Bayes Classifier
5. SVMs (Support Vector Machines)
6. Decision Trees
7. Random Forest Classifier
8. Boosting (Computer Vision Algorithm)
9. Principal Component Analysis (PCA)
10. Clustering Algorithm
11. Face Detection
12. Face Recognition
<Deep Learning>
13. Feed-Forward Neural Networks
14. Deep Neural Networks
15. Convolutional Neural Networks
16. Recurrent Neural Networks (RNNs)
<Reinforcement Learning>
17. Markov Decision Processes (MDP)
18. Exploration vs Exploitation Problem
19. Q Learning Theory
20. Q Learning Implementation (Tic Tac Toe)
21. Deep Q Learning Theory
22. Deep Q Learning Implementation (Tic Tac Toe)
IDE : 파이참
최근댓글